ELECTRONIC SPECTRA OF ORGANIC MOLECULES AND THEIR INTERPRETATION—XII*

THE EFFECT OF SOLVENTS ON THE ELECTRONIC SPECTRA OF THIOBENZOPHENONE AND ITS DERIVATIVES

W. A. LEES[†] and the late A. BURAWOY Manchester College of Science and Technology

(Received 3 July 1963; in revised form 2 February 1964)

Abstract—The electronic spectra of thiobenzophenone derivatives have been studied in a number of solvents of varying polarity. It has been found that both the K_1 - and K_1 -Bands of 4-monosubstituted derivatives move to longer wavelengths with the increasing polarity of the solvent, thus, supporting the view that the electron migration, corresponding to the K_2 -Band, is reversed in these compounds relative to its direction in thiobenzophenone itself. However, in some solvents, of very high dielectric constant, e.g. acetonitrile, the bathochromic shift, relative to hexane, is very small. The reverse effect is noted with the thiocarbonyl R-Band. Although, there is a movement to shorter wavelengths with increase in solvent polarity, some solvents have an effect much greater than consideration of solvent polarity alone would allow. The relatively large and small movements of these R- and K-Bands in the presence of solvents of high polarity confirms the earlier observation on the anomalous behaviour of the spectra of thiobenzophenone and furnishes more evidence for the formation of a specific "association" between solvents of high polarity and the thiocarbonyl group.

INTRODUCTION

In the first two papers of this trilogy the effect of solvents and substituents on the electronic spectra of thiobenzophenone were examined. It is appropriate to conclude by studying the effect of solvents on its derivatives.

The effect of solvents on the electronic spectra of thiobenzophenone and its derivatives

K- and R-Bands. For comparative purposes the data obtained will be presented in six tables, K_{1} -, K_{2} - and R-Bands, non-bonding or hydrogen bonding solvents respectively. Again, for ease of discussion and clarity, an arbitrary distinction is made between hydrogen bonding solvents and non-hydrogen bonding solvents in that the former contain an oxygen atom which may form a hydrogen bond with a suitable hydrogen atom.

The molecular extinction coefficients (ε) are not included in Tables 1-6 as they make reference more complex.

It has already been pointed out in the first two papers that there are two anomalies observed in the spectra of thiobenzophenone in solutions of ethanol and other solvents of very high dielectric constant, such as nitromethane and acetonitrile.

The data, of the diarylthioketones examined, in Tables 1-6 also illustrates this

* Part XI: Tetrahedron 20, 1533 (1964).

† Present address: Leicester, Lovell and Co. Ltd., Southampton, Hants.

C==S IN NON-HYDROGEN

Substit	uents				Solvents				
x	Y	н	В	С	Р	BN	NM	AN	
			•4	3.1	10.4	23.3	34	35.6	D(DE)
н	н	3145	3195	3195	3220	3220		3190	λ _{max}
		31797	31298	31298	31056	31056		31348	ν_{max}
		—	- 499	-499	-741	741		-449	$D\nu (H \rightarrow solv)$
Ph	н	3482	3577	3565	3612	3597		3536	λmsx
		28719	27955	28050	27686	27799	—	28329	vmax
		_	764	- 699	-1033	-920	_	- 390	$D\nu (H \rightarrow solv)$
Ph	Ph	3510	3597	3605	3635	3645		3575	λ_{\max}
		28490	27799	27740	27510	27435	_	27971	vmax
		—	-691	750	- 980	-1055		-519	$D\nu (H \rightarrow solv)$
BzO	н	3536	3633	3680	3687	3683	3665	3637	2.max
		28291	27525	27174	27121	27151	27284	27495	λmax
		_	766	-1117	-1170	-1140	-1007	- 796	$D\nu (H \rightarrow solv)$
но	н		3567	3700	3778	3690	3648	3645	λ _{max}
		_	28034	27027	26468	27100	27413	27445	ν_{max}
			—	-1007	-1566	934	621	- 589	$D\nu (B \rightarrow solv)$
MeO	MeO	3455	3550	3575	3588	3605	3656	3550	Â.max
		28944	28169	27971	27870	27740	27352	28169	v_{\max}
			775	973	- 1074	-1204	1 592	775	$D\nu (H \rightarrow solv)$
но	но	_	3481	3590	3675	3590	3628	3544	λmax
			28727	27855	27210	27855	27564	28217	Vmax
		_	<u> </u>	-872	-1517	-872	-1163	-510	$D\nu (B \rightarrow solv)$
NM ₂	н	4130	4367	4480	4503	4528	4492	4468	Âmax.
		24213	22899	22321	22207	22086	22262	22382	vmax
		—	-1314	-1892	-2006	-2127	-1951	1831	$D\nu (H \rightarrow solv)$
NMe₂	NMe	· —	4330	4420	4480	4485	-	4466	λ_{max}
			23095	22624	22321	22276	<u> </u>	22392	ν _{max}
		—	_	-471	-774	- 799	_	-703	$D\nu (B \rightarrow solv)$

Table 1. Maxima (in Å and cm^-1) of the $K_{(1)}$ -Bands of bonding solvents

(H)exane, (B)enzene, (C)hloroform, (P)yridene, (B)enzo(N)itrile, (N)itro(M)ethane,
(A)ceto(N)itrile, (and for later convenience) (E)thyl(B)enzoate, (E)ther,
(A)ceto(P)henone, (AC)etone, (N)itro(B)enzene.

2230

Substituent			Solvents										
		н	В	С	Р	BN	AN						
			·4	3.1	10.4	23.3	35.6	D(DE)					
н	н	3145	3195	3195	3220	3220	3190	λmax					
		31797	31298	31298	31056	31056	31348	vmax					
			-499	-499	-741	-741	-449	$D\nu (H \rightarrow solv)$					
Ph	н	3315	3375	3415	3370*	3410	_	λ _{max}					
		30166	29629	29284	29674	29326		Vmax					
		—	- 573	-882	-492	-440	—	$D\nu (H \rightarrow solv)$					
BzO	н	3190	3254	3260	3260*	3275	3253	λ _{max}					
		31348	30731	30675	30675	30533	30741	Vmax					
			-617	-673	-673	815	-607	$D\nu (H \rightarrow solv)$					
но	н	_	3238	3240	_	3235	3242	λmax					
			30884	30864		30912	30845	vmax					
			—	-20		28	- 39	$D\nu (B \rightarrow solv)$					
NMe ₂	н	3233	3315		3398	3230*	3375	λ_{max}					
-		30932	30166		29428	30960	29629	vmax					
		_	766		-1504	28	- 1303	$D\nu (H \rightarrow solv)$					

Table 2. Maxima (in Å and cm^{-1}) of the K₂-Bands of the compounds in Table 1 in non-hydrogen bonding solvents

* It is doubtful if the maxima figures are accurate since these peaks are affected by either or both the absorption of the solvent and the absorption of the K_1 -Band.

anomaly and extends it, quite clearly, to other solvents. The data allows the following observations to be made:

i. With non-hydrogen bonding solvents of low polarity, the K_1 - and R-Bands move progressively to longer and shorter wavelengths respectively, in the order of increasing dielectric constant—hexane < benzene < pyridine < nitrobenzene though progressive increments in the dielectric constant have a decreasing effect.

ii. With non-hydrogen bonding solvents of high polarity both the K_{1} - and R-Bands display strong hypsochromic shifts in order of increasing polarity and dielectric constant—chloroform \sim benzonitrile < nitromethane < acetonitrile.

iii. In hydrogen bonding solvents, especially ethanol and ethyl acetate (equilibrium), the diarylthioketones, except for the hydroxy derivatives, display bathochromic shifts for the K_1 -Band which are smaller than consideration of the dielectric constant alone would imply. The opposite effect is observed for the R-Bands.

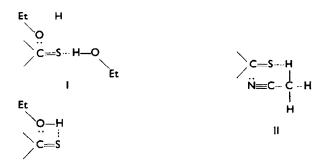
iv. The view that the electron migration corresponding to the K_2 -Bands investigated is away from the thiocarbonyl group is confirmed, since the movement of the K_2 -Band in various solvents, though smaller, is similar to that of the K_1 -Band.

Since both a reduction in a bathochromic shift and an increase in a hypsochromic shift indicate an increase in the energy required for excitation it would appear that

Substituents						Solve	nts			
x	Y	н	В	С	Р	BN	NB	NM	AN	
		_	·4	3.1	10.4	23.3	32.9	34	35.6	D(DE)
н	н	6092	6040	5970	6000	5985	5995	5915	5920	λ _{max}
		16414	16556	16750	16667	16708	16680	16906	16892	v _{max}
		—	142	340	253	294	276	492	478	$D\nu (H \rightarrow sol)$
Ph	н	6100	6057	5975	6027	6030	6030	5940	5945	λ_{\max}
		16393	16510	16736	16592	16584	16584	16835	16821	vmax
			117	343	199	191	191	442	428	$D\nu (H \rightarrow sol)$
Ph	Ph	6140	6087	5990	6060	6050	6065	5970	5980	λ_{\max}
		16287	16428	16694	16502	16529	16488	16750	16722	ν _{max}
			141	407	215	242	201	463	535	$D\nu (H \rightarrow sol)$
BzO	н	5985	5960	5800	5921	5975	5914	5830	5835	λ _{max}
		16708	16779	17241	16889	16736	16909	17153	17138	ν _{max}
		_	71	533	181	28	201	445	430	$D\nu (H \rightarrow so)$
но	н	-	5949	5775	5860	5865	_	5790	5810	$\hat{\lambda}_{max}$
			16810	17316	17065	17050	—	17271	17212	^v max
		-	_	506	255	240	_	461	402	$D\nu (B \rightarrow sol$
MeO	MeO	5895	5870	5720	5842	5830	5832	5742	5865	λ_{max}
		16963	17036	17483	17117	17153	17416	17147	17050	Vmax
		—	73	520	154	190	184	453	87	$D\nu (H \rightarrow sc)$
но	но	-	5865	5665	5775	5800	5820	5737	5735	λ_{\max}
			17050	17652 602	17316	17241 191	17182 132	17431 381	17437 387	$\frac{\nu_{\text{max}}}{D\nu}$ (B \rightarrow sol
			-	002	266	191	132	301	307	$DV(B \rightarrow 30)$
NMe ₂	н	5880	5815	5637	5700	5752	5675	5510	5580	λ_{max}
		17007	17197	17740 733	17544 534	17385 378	17621 614	18149 1142	17921 914	ν _{max} Dν (H → so
			190	/33	534	576	014	1142	714	DV (11+ 30)
N(Me) ₂	N(Mc) ₂		5730		5630	5615	5620	5450	5520	λ _{max}
			17452		17762	17809 357	17794 342	18349 897	18116 664	v_{max} Dv (B \rightarrow sol
		-	_	—	310	357	342	697	004	DV (B → 301
2-MeO	2'-MeO	6034	5975	_	5925	5916	5920	_	5855	λmax
		16573	16736		16878	16903	16892	_	17079 506	ν _{max} Dν (H → sol
			163		305	330	319	_	300	טע (ת -≁ \$0ו
4-NO ₂	н	6220	6175	—	-	6125	6155	6065	6060	λ_{max}
		16077	16194		_	16327 250	163 54 277	16488 411	16502 425	v_{max} Dv (H \rightarrow sol
		<u> </u>	117			200	Z / 1		-+23	$\rightarrow 00$

Table 3. Maxima (in Å and \mbox{cm}^{-1}) of the R-Band of the compounds in Table 1 in non-hydrogen bonding solvents

Substit	uents				S	olvents			
x	Y	—————————————————————————————————————	ET	EB	EA	АР	AC	E	
			2.4	4.1	4.1	15-5	18.8	22.4	D(DE)
н	н	3145	3145	3218	3167			3157	λ _{max}
		31797	31797	31077	31575	_		31675	<i>v</i>max
			0	-720	-222			-122	$D\nu (H \rightarrow solv)$
Ph	н	3482	3520	3585	3537	_	3565	3522	2 _{max}
		28719	28409	27893	28273	•	28050	28393	vmax
			-310	-826	-446	—	-609	-326	$D\nu (H \rightarrow solv)$
Ph	Ph	3510	3535	3625	3560		3587	3562	λmax
		28490	28289	27586	28090	—	27877	28074	vmax
			201	-904	-400	_	-613	-416	$D\nu (H \rightarrow solv$
BzO	н	3536	3580	3660	3632	3732	3647	3621	λmax
		28291	27933	27322	27533	26789	27420	27617	¹ /max
			- 358	969	758	-1052	-871	-674	$D\nu (H \rightarrow solv)$
но	н	(3567)	3635	3665	3638	3728	3660	3690	λ_{\max}
		28034	27510	27284	27488	26825	27322	27100	vmax
			- 524	-750	- 546	1209	-712	-934	$D\nu (B \rightarrow solv)$
MeO	MeO	3455	3530	3570	3530		3545	3530	λmax
		28944	28329	28011	28329	—	28209	28329	Vmax
			-615	-933	-615		-735	-615	$D\nu (H \rightarrow solv)$
но	но	(3481)	3530	3567	3537	3693	3580	3582	λmax
		28727	28329	28034	28273	27077	27933	27917	v _{max}
			- 398	-693	-454	-1650	- 794	-810	$D\nu (B \rightarrow solv)$
NMe,	NMe ₂	(4330)	_	4395	4295	4483	4405	4335	λmax
		23095		22752	23282	22306	22702	23068	vmax
				-343	187	-689	- 393	-27	$D\nu (B \rightarrow solv)$
NMe ₂	н	4130	4310	4424	4342	4527	4435	4372	λ_{max}
		24213	23202	22604	23030	22090	22548	22872	¥max
			-10 11	-1609	-1183	-2123	-1665	-1341	Dv (H → solv


Table 4. Maxima (in Å and $\rm Cm^{-1}$) of the $K_{(1)}\text{-}Bands$ of the compounds in Table 1 in hydrogen bonding solvents

Substi	tuent				Sc	lvents		
x	Y	H or (B)	ET	EB	EA	AC	E	
			2.4	4.1	4 ·1	18.8	22.4	D(DE)
н	н	3145	3145	3218	3167		3157	λ _{max}
		31797	31797	31077	31575		31675	vmax
			0	- 720	- 222		-122	$D\nu (H \rightarrow solv)$
Ph	н	3315	_		3345	_	3332	λ _{max}
		30166			29895		30012	Vmax
			-		- 271		-154	$D\nu$ (H \rightarrow solv)
BzO	н	3190	3220	3250	3235		3234	λ_{\max}
		31348	31056	30769	30912		30922	v _{max}
			- 292	579	- 436	—	-426	$D\nu (H \rightarrow solv)$
но	н	(3238)	3187	3226	3180	_	3150	Âmax
		30884	31376	30999	31447		31746	v_max
			492	115	563		862	$D\nu (B \rightarrow solv)$
NMe₂	н	3233	3280	3340	3327	3370	3440	λmax
		30932	30488	29940	30058	29674	29070	v _{max}
			-444	992	-874	-1258	-1862	$D\nu (H \rightarrow solv)$

TABLE 5. MAXIMA (IN Å AND CM^{-1}) of the K2-Bands of the compounds in Table 1 In hydrogen bonding solvents

some property common to both solvents of high polarity and those which can hydrogen bond is reducing either or both the polarity and polarizability of the K-Band system and increasing either or both for the R-Band system.

A possible explanation is that the solvent and the thiocarbonyl group of the solute "associate." Typical associations are illustrated in I and II. Such "associations"

would certainly inhibit the electron migration corresponding to the K-Band, since they would effectively increase the electron density at the carbon atom of the thiocarbonyl group. In the case of the R-Band, the increase in electron density at the carbon atom of the thiocarbonyl group would inhibit the perturbation into the rest of the molecule. This factor would increase the transition energy requirements

Substituents					S	Solvents			
x	Y	H or (B)	ET	EB	EA	АР	AC	E	
			2.4	4.1	4·1	15.5	18.8	22.4	D(DE)
н	н	6092	6055	6053	6005	5990	6010	5990	λ _{max}
		16414	16515	16521	16653	16694	16639	16694	rmax
		_	101	107	239	280	225	280	$D\nu (H \rightarrow solv$
Ph	н	6100	6035	6040	6020	6030	6030	5980	λmax
		16393	16570	16556	16611	16584	16584	16722	vmax
		—	177	163	218	191	191	329	$D\nu (H \rightarrow sol$
Ph	Ph	6140	6045	6070	6050	6070	6037	6025	λmax
		16287	16542	16474	16529	16474	16565	16597	vmax
		—	255	187	242	187	278	310	$D\nu (H \rightarrow sol$
BzO	н	5985	5933	5940	5915	5907	5900	5875	λ_{max}
		16708	16855	16835	16906	16929	16949	17020	vmax
		—	147	127	198	221	241	313	$D\nu (H \rightarrow sol$
но	н	(5949)	5910	5906	5890	5885	5868	5760	λmax
		1681 0	1 6920	16932	16978	16992	17043	17361	vmax
		—	110	122	168	182	232	551	$D\nu (B \rightarrow solv$
MeO	MeO	5895	5835	5875	5850	5850	5827	5760	λ_{\max}
		16963	17138	17021	17094	17094	17162	17361	vmax
		—	175	58	131	131	199	398	$D\nu (H \rightarrow sol$
но	но	(5865)	5800	5830	5815	5815	5787	5618	λ_{max}
		17050	17241	17153	17197	17197	17280	17800	vmax
		—	191	103	147	147	230	750	$D\nu (B \rightarrow sol)$
NMe ₂	н	5880		5750	5764	5695	5680	5387	λ _{max}
		17007		17391	17349	17559	17606	18562	vmax
		—	—	384	342	552	599	1555	$D\nu (H \rightarrow sol$
NMe ₂	NMe ₃	(5730)	5700	5750	5700	5650	5622	*	λ_{max}
		17452	17544	17391	17544	17699	17788	_	νmax
			92	- 61	92	274	336	—	$D\nu (B \rightarrow sol)$
2-MeO	2'-MeO	6034	6000	5940	5935	5930	5920	5880	λmax
		16573	16667	16835	16849	16863	16892	17007	νmax
			94	262	276	290	319	434	$D\nu (H \rightarrow so)$
4-NO,	н	6220		6170	6140	6150	6125	6150	Âmax
		16077		16207	16287	16260	16327	16260	vmax
			—	130	210	183	250	183	$D\nu (H \rightarrow sol$

Table 6. Maxima (in Å and cm^{-1}) of the R-bands of the compounds in Table 1 in hydrogen bonding solvents

* Inflection.

However, if the transition were $n \rightarrow \pi^*$ and not singlet-triplet as has been assumed above, then such an increase in the electron density of the carbon atom would have facilitated the electron migration into the rest of the molecule, and in consequence a bathochromic shift of the R-Band *might* well be expected, such a shift is not observed.

In the case of the 4-hydroxy- and 4,4'-hydroxy-thiobenzophenones in ethanolic (ethyl acetate) solution, the "association" effect is partially over-ridden by the formation of a strong hydrogen bond between the hydroxyl group(s) and the solvent, giving, in consequence, a greater bathochromic shift to the K-Bands.

The hypsochromic shift of the R-Band, due to "association" is assisted by the formation of the hydrogen bond between the hydroxyl group(s) and the solvent.

Molecular models have shown that these associations are physically possible. Moreover, work by Franzosini (1) though interpreted on a differing basis (excited states and the R-Band represented by an $n \rightarrow \pi^*$ transition) to that offered here, has shown in the case of symmetrical thio- and seleno- γ -pyrones that there is a distinction between the solvent effect of non-hydrogen bonding and hydrogen bonding solvents. His observations concur with those made here.

EXPERIMENTAL

Spectra were determined with a Hilger Uvispek Photoelectric Spectrophotometer, using quartz cells. Maxima above 4000 Å were obtained with a glass prism, those below, with a quartz prism. All solvents were purified and their absorption spectra checked against published values.

The absorption spectra of unstable compounds were determined by making up and maintaining solutions under appropriate conditions. Weak acids were ionized by the addition of NaOH aq. Care was taken to ensure that there was no adverse effect upon the absorption spectrum of the compound concerned.

4-Nitrothiobenzophenone is unstable unless its solutions are saturated with HCl and H_2S . Further, attempts to purify it led to instantaneous decomposition. Accordingly, the R-Band spectra in solvents other than benzene, in which it was prepared (part XI), were determined by analysing solutions made up from benzene mother liquor (2%) and benzonitrile, nitrobenzene, nitromethane and acetonitrile (98%). Each solution was saturated with HCl and H_2S . The spectra of other thiobenzophenones were re-determined in order to check the effect of the benzene and the gases. No significant differences were observed.

Acknowledgements—The authors wish to thank Professors H. N. Rydon and R. N. Haszeldine for the facilities provided in the College and the laboratory staff for their unfailing assistance.

A special tribute is due to the late Dr. A. Burawoy who supervised this work, in which he was actively engaged before his death.

⁽¹⁾ P. Franzosini, Gazz. Chim. Ital., 88, 1109 (1958).